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SUMMARY 

Details are given of the development and application of a 2D depth-integrated, conformal boundary-fitted, 
curvilinear model for predicting the depth-mean velocity field and the spatial concentration distribution in 
estuarine and coastal waters. A numerical method for conformal mesh generation, based on a boundary integral 
equation formulation, has been developed. By this method a general polygonal region with curved edges can be 
mapped onto a regular polygonal region with the same number of horizontal and vertical straight edges and a 
multiply connected region can be mapped onto a regular region with the same connectivity. A stretching 
transformation on the conformally generated mesh has also been used to provide greater detail where it is needed 
close to the coast, with larger mesh sizes fiuther offshore, thereby minimizing the computing effort whilst 
maximizing accuracy. The curvilinear hydrodynamic and solute model has been devcloped based on a robust 
rectilinear model. The hydrodynamic equations are approximated using the AD1 finite difference scheme with a 
staggered grid and the solute transport equation is approximated using a modified QUICK scheme. Three 
numerical examples have been chosen to test the curvilinear model, with an emphasis placed on complex 
practical applications. 

KEY WORDS: shallow water equations; boundary-fitted co-ordinate systems; curvilinear meshes; finite difference method; 
conformal mapping 

1. INTRODUCTION 

Numerical methods as a tool for simulating flow and pollutant transport are increasingly important in 
hydraulic and environmental engineering. The two types of numerical models that are most 
commonly used in solving the two- dimensional (2D) depth-integrated shallow water equations are 
the finite difference method (FDM) and the finite element method (FEM). The FDM is simple to use 
and very effective in dealing with the non-linear advective terms in the shallow water equations, 
which may cause serious stability problems. Traditional finite difference models for shallow water 
flow and pollutant transport employ rectangular finite difference grids.’” A disadvantage of this 
method is that the treatment of boundary conditions on curved boundaries is necessarily approximate, 
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with the curved boundary being replaced by a staircase of grid points. The FEM has the advantage of 
flexibility in dealing with problems of great geometrical complexity. Nevertheless, compared with the 
FDM, using the FEM, it is more difficult to reduce the numerical oscillation3 and more expensive to 
invert the resulting matrices, which are generally very large. 

Boundary-fitted co-ordinate systems provide an approach which combines the best aspects of finite 
difference methods, enabling more accurate resolution of the highly non-linear advective terms in the 
momentum and solute transport equations, e.g. with a greater degree of gnd flexibility than regular 
grid schemes. In the last 10 years, several boundary-fitted curvilinear tidal circulation models have 
been developed, including those of Spaulding? Hauser ef al.,’ Willemse el a1.,6 Shen ef al.,’ Gialone’ 
and Borthwick and Barber.’ With this method the physical curved region of flow is transformed onto 
a simpler computational domain on which the finite difference method is applied. In transforming the 
curved region to the computational domain, the governing equations of flow and solute transport are 
also transformed, thereby leading to more complex equations. The degree of complexity depends 
upon the type of the transformation, with the increase in the level of complexity being a disadvantage 
of this method. 

Non-orthogonal co-ordinate transformations lead to the most complexity in the transformed 
equations. The advantage of such a transformation is that the mesh distribution is least restricted and 
can be controlled easily. The disadvantages are that it leads to considerably more complicated 
transformed equations, so that the computations are more expensive, and that it may cause larger 
truncation errors at boundaries where one-sided difference expressions are needed.” Hauser ef al.’ 
have employed a non-orthogonal transformation in the numerical study of the shallow water 
equations. Their scheme became unstable when applied to a practical engineering problem. Stability 
problems were also encountered in Borthwick and Barber’s’ non-orthogonal model when severe 
mesh distortion prevailed and a digital smoothing filter was used to treat these instabilities. 

Orthogonal co-ordinate systems produce fewer additional terms in the transformed partial 
differential equations and yet they still allow considerable control over the line spacing. Willemse er 
ale6 have developed a hydrodynamic model based on an orthogonal transformation, the orthogonal 
curvilinear grid generated by solving Poisson’s equation. 

Conformal mapping is a special type of orthogonal transformation. It has the advantage that the 
governing partial differential equations acquire a minimum number of extra terms on transformation, 
so that the solution procedures developed for Cartesian co-ordmates may be applicable with only 
minor changes. Conformal mapping has a very strong theoretical background in complex function 
theory and many of the results of analytic function theory are usehl in the mesh generation process. 
However, conformal mapping does not provide much control over the grid line distribution. 
Nevertheless, a more flexible and still orthogonal grid can be generated by augmenting the conformal 
mapping with simple one-dimensional stretching transformations. 

The numerical model DIVAST (Depth-Integrated Velocities And Solute Transport), developed by 
Falconer,’.” is a robust and reliable numerical model for solving the 2D depth-integrated shallow 
water equations using a uniform rectangular mesh grid. It has been widely used by many U.K. and 
overseas consultants, universities and research organizations for both industrial and research projects. 

In this paper, details are given of the development and application of a 2D depth-integrated finite 
difference estuarine and coastal model with a conformal boundary-fitted curvilinear mesh. A novel 
method of numerical conformal mapping, based upon a boundary integral equation formulation, has 
been used to generate the mesh. The method is able to map a general polygonal region with 2N 
curved sides onto a regular region with the same number of sides: thus it is able to generate 
curvilinear meshes directly on general curved polygonal regions. If more control over the distribution 
of the grid mesh lines is necessary, a stretching transformation is then employed. The mesh thus 
generated is still orthogonal but no longer conformal. 
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In Section 2 the method for generating the conformal mesh is discussed. In Section 3 the stretching 
technique for adjusting the distribution of the mesh lines is presented. Section 4 gives the original 
governing equations in Cartesian co-ordinates. In Sections 5 and 6 the transformed equations are 
presented and the finite difference scheme used to solve these equations is derived. Section 7 presents 
three numerical examples: the first two are practical applications to real estuarine tidal flows and the 
third is solute transport in a meandering flume. In each case, comparisons with field or laboratory data 
are presented. 

2. CONFORMAL MESH GENERATION 

To illustrate the idea, we start with the problem of mapping an arbitrary quadrilateral onto a 
rectangle; see Figure 1. From complex function theory" we know that the quadrilateral {Q: 
A, B, C, D) is conformally equivalent to the rectangle (Q: a, b, c, d}, if the ratio L / m  is equal to 
m(Q), the conformal module of {Q: A, B, C, D). If F = u + iv is the mapping function F: Q+ 0, 
then u and v satisfy the Laplace equations 

inside Q and the Cauchy-Riemann equations 

a u a v  _ -  -_  - a u a v  _ -  
as--$' an as 

on the boundaries, where a/& and a/an denote the tangential and normal derivatives respectively, s 
directed counter-clockwise around aQ and n directed into Q. Thus u and v satisfy the boundary value 
problems shown in Figure 2, in which the subscript n denotes the normal derivative a/&. 

A number of numerical methods have been developed to map the quadrilateral Q onto a rectangle, 
including finite difference methods, finite element methods and methods based on approximating the 
conformal mapping of Q onto the unit disc. Most of these methods need iteration to find the 
conformal module. A survey of the methods can be found in Reference 13. 

In the following an alternative method will be presented in which both the conformal module m(Q) 
and the conformal mapping can be calculated with no iteration. 

0 '  J L ;a . -  
- 1 

(a) a general quadnlatcral (b) arcctangle 

Figure 1 .  Mapping a quadrilateral onto a rectangle 
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vq = 3 )  l y 9  

B v = c  B A A u,=2 

(a) for u = Re(F) (b) for v = h(F) 

Figure 2. Laplace equations and boundary conditions for u and v 

From equation (2) the following equations can be obtained: 

Dau  D a v  L = - J, -ds = - J, Gds’ 
as 

Let u1 be the solution to the boundary value problem shown in Figure 2(a) with L = 1 and let v I  be 
the solution to the boundary value problem shown in Figure 2(b) with M =  1. We have 

v = Mv, .  (4) u = Lu, ,  

Substituting from equation (4) into equation (3) yields 

Equations ( 5 )  can be written in matrix form as 

AX = 0. 

with 

It can be shown that 

x =  [:I. 
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Thus the rank of the matrix A is one and equation (6) has non-trivial solutions. The solution X will 
not be unique, but the ratio m = L / M  will be a constant, which is the conformal module of the 
quadrilateral {Q: A, B, C, D}. 

To compute the map F on the boundary, the following procedure has been employed. 

1. Solve the boundary value problems for u1 and v1 using the boundary element method14 on the 
boundary of the physical domain Q. The boundary element method yields approximations to u1 
and vl  and their normal derivatives on the boundary of Q. 

2. Solve equation (6) together with the condition L = C, where C is a constant, approximating the 
integrals in the matrix A by numerical quadrature. 

3. Compute F = u + iv on the boundary using equation (4). 

Since F: Q + R is a one-to-one mapping, once the functions u(x, y )  and v(x, y)  are known at the 
boundary of the quadrilateral Q in the z-plane, the inverse functions x(u, v) and y(u, v )  are also known 
at the corresponding points of the boundary of the rectangle R in the w-plane. Hence the inverse 
mapping G = F--' can be computed throughout R either by solving the Laplace equations on a 
regular finite difference grid in the w-plane, using, e.g., the AD1 method, or by applying numerical 
quadrature methods to Cauchy's integral formula,I4 which expresses the inverse mapping explicitly. 
Evaluation of the inverse mapping G at the mesh points of the regular mesh in the computational 
region R determines the location of the mesh points of the orthogonal mesh in the physical region Q. 

Note that the above method is able to determine the conformal module of the quadrilateral 
{Q: A, B, C, D) with no iteration. 

The above idea can be extended to curvilinear polygonal and multiply connected regions. Consider 
a curvilinear polygonal region Q with N sides (N being even), as illustrated in Figure 3(a), and a 
polygon R with n vertical sides and n horizontal sides (n = N/2), as illustrated in Figure 3(b). In 
Figure 3(b) for m = 2,4, . . . , N the mth side is the vertical side U = Urn and for m = 1,3, . . . , N - 1 
the mth side is the horizontal line V =  V,. Assume that there exists a conformal mapping F which 
maps Q onto R with PI, P,, P,, . . . , P, being mapped onto pI ,  p,, p3, .  . . , pN respectively. Then 
F = u + iv, where (cf. Figure 2) u and v satisfy the boundary value problems shown in Figure 4. For 
i = 1,2, . . . , n let U(,') be the solution of the boundary value problem in Figure 4(a) when U2, - a,, 
m = 1.2, . . . , n (6, is the Kronecker delta), and let V(2'-1) be the solution of the boundary value 
problem in Figure 4(b) when VZm-] = 6,, m = 1,2, . . . , n. Then 

As described earlier for the case of mapping onto a rectangle, and V(2m-') for m = 1,2, . . . , n 
are determined using the boundary element method. The constants Uh and Vh-l for m = 1,2, . . . , n 
satisfy the following system of equations which generalizes (6): 

with 
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dF, l = 2 , 4  , . . . ,  N, k = 2 , 4  ,..., N, b f = /  - 
au(k) 

r, an 

d ~ ,  1 = 1 , 3  ,..., N - 1 ,  k = 1 , 3  ,..., N - 1 .  

The vector of unknowns X is determined by solving, using a least squares method, equation (8) 
together with the additional constraints Vl = 0, U2 = 0 and VN- = C for some constant C, which fix 
the position and size of R. For further details and the extensions to the multiply connected case see 
Reference 19. 

\ 

Q 

p3 
J 

(a) a curvilinear polygonid rcgion 

w 
r-----  

>- . 

(b) a rectilinear agio0 
Figure 3. Mapping a curvilinear polygonal region onto a rectilinear region 
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(a) for u = RdF) 

Figure 4. Laplacc equations and boundary conditions for u and v 

3. LOCAL MESH LINE REDISTRIBUTION 

The advantage of using a co-ordinate system generated by conformal mapping is that the number of 
extra terms caused by transforming the governing equation from Cartesian co-ordinates to curvilinear 
co-ordinates is minimized. However, this mapping does not have much control over the grid point 
distribution in the physical domain, since the conformal mapping is uniquely determined once the 
positions of the points P,, Pz, P,, . . . , PN on the physical boundary are decided. Therefore, if a fine 
mesh is required in some particular regions of interest, e.g. near an outfall, the mesh for the whole 
domain must also be increased. 

One way to increase the flexibility of mesh size control is to redistribute the conformally generated 
mesh by introducing a stretching transformation. It is clear16 that one-dimensional stretching 
transformations applied to a conformally generated mesh can maintain the orthogonality of the 
original mesh but not the conformality. In this way the mesh resolution can be increased in key 
regions with only a moderate increase in computational cost. 

To describe the modified mesh generation procedure, we introduce the one- dimensional stretching 
transformations kl and k2, both real-valued functions of a single real variable and strictly monotonic 
increasing. The modified procedure is as follows. 

1. Set up a rectangular grid in the 5-q plane. 
2. Transform this to a stretched rectangular grid in the u-v plane, point (t, q )  mapped to (u, v) 

with u = k;' ( 5 )  and v = 4-l (q).  
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3. Transform the stretched rectangular grid conformally onto the physical region, the point 
w = u + iv mapped onto z = x + iy = G(w), where G is the conformal mapping calculated as 
described in the previous section. 

4. GOVERNING EQUATIONS IN THE CARTESIAN CO-ORDINATE SYSTEM 

The mathematical model used in this study, in Cartesian co-ordinates, can be described by the 
following depth-integrated two-dimensional momentum, mass conservation and solute transport 
equations. For a constant density turbulent flow on a rotating earth the depth-integrated momentum 
equations for flow in the horizontal co-ordinate directions x and y can be expressed respectively as" 

a X P  u u  
at ?Y ax P cz2 

+-(Uxqy))  -fqy + g H - -  - " C W , W  +g"- - EH 

1 2 3 4 5 6 7 (9) 

where H is the depth of flow, Ux and Uy are the depth-mean velocity components in directions x and y 
respectively, U = (U: + Uj)1'2,  qx = UxH, qy = UyH, t is the time, /? is a correction factor for non- 
uniformity of the vertical velocity profile ( = 1 .O 16 for assumed seventh-power-law profile), f is the 
Coriolis parameter, g is the acceleration due to gravity, ( is the water elevation, pa is the air density, p 
is the fluid density, C is the air-water interfacial resistance coefficient, W, and W, are the 
components of wind velocity in the directions x and y respectively. W = (W,' + Wj)"2,  Cz is the 
Chezy bed roughness coefficient and E is the depth mean eddy viscosity. In equation (9) the various 
terms are the depth-integral local acceleration (term I ) ,  advective acceleration (term 2), Coriolis force 
(term 3), pressure gradient (term 4), wind shear force (term 5) ,  bed shear resistance (term 6) and 
turbulence-induced shear force (term 7). 

The Chezy value Cz can be evaluated either from the Manning equation or from the Colebrook- 
White equation. The advantage of using the Colebrook-White equation to calculate Cz is that the 
value of the roughness coefficient ks can be more closely related to bed features, such as ripples or 
dunes, and the representation of the Chezy value can include transitional turbulent flow. This 
refinement can be particularly important when modelling the flooding and drylng processes of tidal 
flood plains, where Reynolds number effects may not be insignificant.'* The lateral shear stress is 
represented by the Boussinesq eddy viscosity, and with a zero-equation turbulence model. 

Likewise, the depth-integrated conservation equations of mass and solute transport can be written 
respectively as 

at; a 4 x  aqY - 0 -+ -+- - ,  
at ax a 

- 2 ( H D  --+ ac 
ay y x a x  

- H(C, + C, + c,) = 0, 

where C is the depth-mean solute concentration, D,, Dxy, Dyx and D,,,, are the mean dispersion 
coefficients in the hrections x and y respectively, C, is the direct and diffuse loading rate, C, is the 
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boundary loading rate (including upstream, downstream, benthic and atmospheric inputs) and C, is 
the total kinetic transformation rate. 

5. TRANSFORMED GOVERNING EQUATIONS 

In the orthogonal co-ordinate system, equations (9H12) can be written as follows: 
(-momentum 

1 2a 2b 3 4  

P 
5 6 7a 

i a  ( - - ( h , U , ) )  i a  - l a  ( i z ( h 2 U , ) ) ]  = 0 ,  
h ,  a t  J3 h2atl J a y  

7b 

q-momentum 

P 

(14) 

mass conservation 

solute conservation 

xcm 1 

where hl  and h2 are the transformation scale factors in the directions < and 7 respectively, J = h l h ~  
and the subscripts 5 and q denote the vector components in the directions ( and 7 respectively. Note 
that, adopting the mesh generation scheme of Section 3, explicitly, h,  = IG’(w)l/k;(u) and 
h2 = IG’(w)l/G(v), where u = k ; l ( t ) ,  v = k;I(q) and w = u + iv. 
In equation (13) the numbering of terms corresponds to that in equation (9). Comparing equation 

(13) with (9), it can be seen that terms I ,  2a, 3 ,4 ,5 ,6 ,  and 7a in (13) are, apart from the introduction 
of the scale factors h ,  and h2, identical with terms 1-7 in (9). The additional terms 2b and 7b are 
associated with the spatial rate of change of the scale factors (see also Reference 19). 
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If the transformation used is conformal, (e.g. if the scheme of Section 2 is used), equations (1 3)- 
(1 6) can be simplified fiuther using the Cauchy- Riemann equations (2),  since it is then the case that 
hi = h2. 

6. NUMERICAL SCHEME 

6.1. The hydrodynamic model 

A finite difference discretization of the hydrodynamic equations ( 9 x 1  1) written in an alternating 
direction implicit form using a space-staggered grid scheme was presented in Reference 17. This 
discretization has been modified to obtain finite difference versions of the transformed equations 
(13H15). In developing and applying this curvilinear co-ordinate model, emphasis has been focused 
on modelling the complex hydrodynamic processes in practical engineering problems. For example, 
to simulate flooding and drying, the scheme outlined by Falconer and Chen” was modified for use on 
the curvilinear grid. 

In order that the geometric derivatives can be specified at the cell centres and mid-faces, following 
Borthwick and Barber: the co-ordinate mesh for the required flow domain is generated with twice as 
many cells in each direction as are required for the final hydrodynamic mesh. 

For the first half-time step from level n to n + 5 the mass conservation equation (1 5) is discretized 
and rearranged to give 

where 

The subscripts j and k denote a value at the grid point with co-ordinates t = j A t  and q = kAq and the 
superscript n indicates time t=nAt.  The t-direction momentum equation (13) is discretized and 
rearranged to give 

where 
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In this equation, 

1 if U; < 0, 
0 if U; > 0, 

where 

and q is determined similarly. Equations (1 7) and (1 8) are used iteratively in a two-stage predictor- 
corrector mode. For the first iteration, equations (1 7) and (1 8) are solved with the terms written with a 
prime replaced by the values of the same variables calculated at time step n - 4. At the second 
iteration these terms are expressed in time-centre form at level n using the mean of the values 
calculated at the previous time step and at the end of the first iteration. 

to n + 1, implicit finite difference 
discretizations of the continuity equation (1 5 )  and of the q-component momentum equation (14) are 
solved for q,, and 6.  

Similarly, for the second half time-step from level n + 

Define the Courant number Cr by 
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where Amin = min(&hlAt h2Aq)), the minimum mean mesh diameter over all grid squares. From 
computations with various test examples it appears that a Courant number of not greater than 
approximately Cr = 8 is necessary for accurate predictions. These observations are also reported for 
the regular gnd scheme of the original method DIVAST, to which this scheme reduces if hl = h2 = 1. 

The Coriolis acceleration term in equation (1 8) may cause stability problems as it is approximated 
forwards in time. Generally speaking, this problem is more pronounced in deeper water than in 
shallower water. In the present study the water depths encountered are scarcely bigger than 50 m, so 
the Coriolis effects on stability are small compared with the effects of other terms in equation ( 1  8). 

The solute transport model 

For the finite difference representation of the solute transport equation (16) the AD1 version of the 
QUlCK difference scheme was adopted with a semi-implicit representation for the higher-order 
terms. The QUICK finite difference scheme is based on assuming quadratic upstream interpolation 
and was first proposed by Leonard" for steady flows. This scheme has been increasingly used in 
recent years for water quality modelling owing to its computational efficiency and simplicity. When 
the scheme is applied to unsteady flows, several finite difference forms exist. Alter comparing five 
versions of the 2D unsteady QUICK scheme, Chen and Falcone?2 found that the semi-implicit 
version of the QUICK scheme was computationally efficient and almost as accurate as the fully time- 
centred implicit scheme. 

For brevity, only the discretization of the orthogonal form of the advection- diffusion equation 
(16) will be presented. For the first half-time step from level n to n + the finite difference scheme is 
expressed in the form 

= dispersion and diffusion + source or sink + decay and interaction, 

where 

and similarly 

The dispersion-difhsion terms are expressed in a fully centred form, as done by Falconer" for the 
Cartesian form of the equation. 
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7. MODEL VERIFICATION AND APPLICATIONS 

Three test cases were used to test the model performance, namely (i) tidal propagation in the Bristol 
Channel, U.K., (ii) tidal propagation and solute transport in the Humber Estuary, U.K. and (iii) flow 
and solute transport in a laboratory meandering channel. 

Case study 1 

The conformal mesh model was applied to simulate tidal elevations and currents in the Bristol 
Channel. The original, rectilinear finite difference model was also used for comparison purposes. 
Figure 5 shows the part of the Bristol Channel modelled, together with the approximations to the true 
boundary adopted in the curvilinear and rectilinear models. The tidal range in the Bristol Channel is 
one of the highest in the world. Thus accurate modelling of the tidal flow is a very severe test. The 
region was originally represented by a regular mesh of 81 x 57 grid points with a constant grid 
spacing of 1800 m. The bathymetry of the basin was represented by prescribing the depth below 
Chart Datum at the centre of each grid square. These data were obtained from Admiralty Chart No. 
1 179. 

Two boundary-fitted meshes were generated (see Figures 6 and 7) using the conformal method 
described in Section 2. In generating Figure 6, the physical domain was considered as a quadrilateral 
and mapped onto a rectangle. As with other elliptic grid generation methods (without control 
fimctions), large grid cells tend to appear in regions of strong concave curvature and small grid cells 
appear in the vicinity of strong convex boundary curvature. Obviously, excessively large or small 
grid cells existing in the same mesh will cause inaccuracy and be computationally expensive. In 
generating Figure 7, the physical domain was considered as a curvilinear polygonal region with six 
sides and so was mapped onto a polygon with six sides. It can be seen that the excessively large and 
small grid cells have been eliminated. 

A::. -_ ‘ 0  
-U- 

true boundary 
rectangular mesh 
curvMnear mesh 

+ fleld data o curvllfnear mesh * rectaneular mesh 

Figure 5.  Part of Bnstol Channel modelled and approximations to true boundary used in curvilinear and rectilinear models 
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Figure 6. Conformal boundary-fitted mesh for British Channel, generated via conformal mapping onto a rectangle 

In the following the mesh shown in Figure 7 was used for the hydrodynamic modelling. The depths 
for each grid square centre were interpolated from the regular 1800 m square mesh using the method 
of bilinear interpolation. The simulation period was 62.0 h (five tidal cycles), with the first four tidal 
cycles being the model warm-up period. 

Figure 7. Conformal boundary-fitted mesh for British Channel, generated via conformal mapping onto a six-edged polygon 
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2m/s veloclty a t  54.24 hour - 

Figure 8. Velocity predictions in Bristol Channel using regular mesh 

Figures 8 and 9 show predictions of the velocities at a typical point in the tidal cycle at spring tide 
for the rectilinear and curvilinear models respectively. The shaded areas represent dry land. Both 
predictions were driven by the same boundary conditions. A no-slip boundary condition was imposed 
on the coastline. At the landward open boundary the water elevation was specified from tide tables. 
At the seaward open boundary the water elevation was specified at the bottom comer from tide tables 

211/s veloclty - 
at  t h e  54.25 hour 

brlstol channel 

Figure 9. Velocity predictions in Bristol Channel using curvilinear mesh 
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and the water elevation along the boundary was calculated by applying a Coriolis slope given by” 

with U,, being set to zero. 
Comparing the two predictions. it can be seen that the rectilinear model generally provides a more 

detailed prediction at the downstream end of the estuary. The curvilinear model represents the flow 
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upstream in more detail, in particular the extensive flooding and drying in this region. Also, it avoids 
the generation of vorticity at artificial comers of the domain as seen in the regular grid calculations. 

Comparisons of flow speed and direction have also been made at four points as shown in Figure 5. 
Figures 10 and 11 illustrate the comparisons at points S and L respectively. It can be seen that the 
agreement between the two models is good, with the agreement between both models and the field 
data also being reasonable. The fit at all other points examined was of a similar quality. 
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Case study 2 

The tidal motion in the Humber Estuary was then chosen as an example to verify the capability of 
the orthogonal model as well as the conformal model. The Humber Estuary is situated along the 
north-east coast of England, providing an outlet to the North Sea for the rivers Trent and Ouse and 
shipping access to a number of ports, including Hull, Immingham and Grimsby (see Figure 12). Data 
relating to the hydrodynamic conditions in the estuary were supplied by Associated British Ports 
(formerly British Transport Docks In order to test the solute transport model, a pollutant 
source (outfall) was assumed to exist at a point downstream of Halton Middle, marked by an asterisk 
in Figure 12. 

Owing to the lack of suitable bed roughness data, several authors, including Owensz5 and 
Cahyono,26 have previously calibrated the bed roughness for models of the Humber Estuary. Owens 
used a constant value throughout the whole estuary, while Cahyono employed two constant values for 
the bed roughness, with the value being determined by the magnitude of the local fluid speed. Owing 
to the sparseness of the data and the absence of bed shear measurements, a constant bed roughness 
value seemed most appropriate for the current study. In the following simulations a bed roughness 
value of 0.02 m (as given by Owens25) was therefore used. 

To show the merits and restrictions of the conformal mapping and stretching technique, a 
boundary-fitted mesh was first generated using the conformal mesh generation method. Figure 13(a) 
shows the original boundary and the boundary-fitted mesh (the shaded squares are dry land). The 
number of cells is 130 in the t-direction, with six in the narrower part and 25 in the wider part in the 
q-direction. It can be seen that the mesh size near the landward boundary is smaller than that near the 
seaward boundary. This property is attractive in modelling fluxes along the Humber Estuary, since a 
constant size square mesh is too coarse for the upper part of the estuary, where the meandering deeper 
channel is typically less than 500 m wide. Note also that the width of the cells representing the 
narrow peninsular near Spurn Head is much greater than the actual width. 

An orthogonal mesh was then generated (Figure 13(b)) using the stretching technique to get a 
better representation of the narrow peninsular near Spurn Head and a higher resolution near the 
outfall site. Compared with the conformal mesh, it can be seen that (i) the narrow peninsular near 

-- HOl W.lV L.”.l 

-- Low W.lV LW.1 

Figure 12. Plan of thmber Estuary 
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(a) Conformal mesh 

Figure 13. Boundary-fitted mesh for Humber Estuary 

Spurn Head is more accurately represented, (ii) the number of cells across the narrow part of the 
estuary is increased and (iii) near the outfall site the linear cell size is halved, so that the number of 
cells is approximately doubled in the (-direction. 

In order to drive the hydrodynamic model, water elevation data were used at both the seaward and 
landward boundaries. The water elevation along the North Sea open boundary was evaluated by 
applying a Coriolis slope similar to equation (21). Simulations were undertaken for spring tides for 
both the rectilinear and curvilinear models. The predicted velocity fields for a flood tide are presented 
in Figures 14-16. In the rectilinear model results (Figure 14) the staircase-like mesh and the resultant 
abrupt changes in velocity direction along the boundary at the upper part of the estuary can be clearly 
seen. For the curvilinear mesh (Figures 15 and 16) the velocity fields are much better represented in 
the upper part of the estuary, with the orthogonal model having higher resolutions in the 17-direction. 

A detailed comparison of the measured water elevations and velocities at various positions and at 
various tidal states showed an encouraging agreement between predicted and measured results. 
Figures 17(a) and 17(b) show the water elevation and velocity comparisons at Halton Middle, Middle 
Shoal and Sunk Channel using the orthogonal mesh. At every site the agreement between the 
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Figure 14. Predicted velocity field using rectilinear mesh 

computed and measured results is close for both water elevation and velocity. Since these three sites 
were relatively far from the boundaries, the differences in results between the curvilinear and 
rectilinear models are small. 

In applying the solute transport model, the transport of a conservative contaminant constantly 
discharged from the outfall was simulated. The model was first run for four tidal cycles to achieve 
quasi-steady hydrodynamic conditions before starting to release the contaminant at low water. The 
contaminant was first flushed upstream during the flood tide and then flushed back during the ebb 
tide. Figures 18(a) and 18(b) illustrate the concentration distributions after one complete tidal cycle as 
predicted by the conformal and orthogonal models respectively. Comparing Figures 18(a) and 18(b), 
it can be seen that with the orthogonal mesh the predicted contaminant field is more concentrated 

Figure 15. Predicted velocity field using conformal mesh 
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Figure 16. Predicted velocity field using orthogonal mesh 

(higher peak value and less spread) near the outfall than it is using the original conformal mesh. This 
is considered to be the result of the higher mesh resolution near the outfall obtained by the stretching 
method. 

A time step of 180 s was used for the rectilinear model and 90 s for the two curvilinear models, 
leading to Courant numbers C r x 6  for the rectilinear and conformal models and C r z 9  for the 
orthogonal model. The computational time required for five tidal cycles was about 10 min for the 
rectilinear model, 24 min for the conformal model and 25 min for the orthogonal model using a PC- 
5 100 computer. 

The following observations have been made during the numerical tests. 

(i) As mentioned in Section 6 ,  a Courant number C r z  8 is required for numerical stability, the 
Courant number being defined in terms of the size of the smallest grid cell. 

(ii) Because of this limit on the Courant number, it is usually more expensive to run a curviliner 
model with the same number of mesh squares owing to the smaller mesh sizes upstream, 
which require a smaller (global) time step. However, if we achieve the same resolution 
upstream by reducing the mesh uniformly for the rectilinear model, the increase in 
computational time is much more substantial. For example, in the current study the linear 
dimensions of the curvilinear mesh near the landward boundary are about half those of the 
rectilinear mesh. Thus, if we reduce the mesh size of the rectilinear model to that of the 
Curvilinear model, the computational time will be approximately four times greater if the same 
time step is used but eight times greater if the time step is also halved to maintain the Courant 
number. 

(iii) Owing to the Courant number constraint, if the stretching method used reduces the mesh size 
so that the smallest cell is smaller than in the original conformal mesh, then the time step 
required to run the orthogonal model will be smaller than that for the conformal model. 
Otherwise the time step will not be affected. 

Case study 3 

The last test case was to predict steady state velocities and solute transport in a laboratory 
The flume was 3 5 4  m long, 2-34 m wide and consisted of two 90" identical meandering 
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Figure 17(a). Comparison of predicted (-) and measured (0) water elevation for a spring tide using orthogonal model 

curves of 8.53 m radius of curvature connected by a 4.27 m straight reach. The depth of the flow was 
0.115 m, the slope 0.00035 and the mean velocity 0.305 m s-'. 

A boundary-fitted mesh of 103 x 1 1  grid squares, shown in Figure 19, was generated using the 
conformal method. The predicted velocity field is shown in Figure 20. It can be seen that the 
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Figure 17(b). Comparison of predicted (- ) and measured (0) velocities for a spring tide using orthogonal model 

magnitude of the velocity is increasing From the convex to the concave bank, except in the area very 
near to the bank, where viscosity is dominant. This is in agreement with the experimental observation 
undertaken by Chang.27 

In the three simulations of solute transport shown below, the same flow conditions and source 
positions as in the experiments were employed; see Figure 21. A constant lateral mixing coefficient of 
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(a) [Jsing conformal mesh 

(b) Using orthogonal mesh 

Figure 18. Comparison of predicted concentration distributions 

Figure 19. Boundary-fitted mesh for laboratory meandering channel 

Figure 20. Predicted depth-mean velocity 
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Figure 21. Part of laboratory flume showing working region (shaded) and source positions (dots) 

Figure 22. Companson of predicted and measured solute concentration distributions (source in middle of cross-section) 

1.23 was used, as calibrated by Chang2’ from the flume data. Figure 22 shows the comparison 
between the model simulations and Chang’s experiments of depth-mean concentrations when the 
source is injected into the middle of the flume. Such comparisons generally show good agreement: as 
usual, the numerically predicted results tend to be smoother than the measurements. Figures 23 and 
24 compare experimental measurements and computer simulations when the source was injected 
along the left bank and right bank respectively. Again these comparisons are very encouraging. 

8. CONCLUSIONS 

A boundary-fitted curvilinear model for solving the 2D depth-integrated equations of flow and solute 
transport has been developed. A numerical method for conformal mesh generation has been 
presented which is able to map a curvilinear polygonal region directly onto a regular polygonal 
region with horizontal and vertical sides. For cases where a local mesh concentration is required, a 
stretching technique has been used. The mesh thus generated remains orthogonal but no longer 
conformal. 
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Figure 23. Comparison of predicted and measured solute concentration distributions (source on right-hand side) 

Figure 24. Comparison of predicted and measured solute concentration distributions (source on left-hand side) 
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A curvilinear hydrodynamic and solute model of estuarine and coastal waters has been developed 
based on the robust Cartesian co-ordinate model DIVAST. In developing and applying the curvilinear 
co-ordinate model, emphasis has been given to modelling the complex hydrodynamic processes of 
practical engineering applications. Since the transformed governing equations (particularly in the 
case of conformal transformation) are very similar to the original equations in Cartesian co-ordinates, 
many merits and features of the original model have been maintained in the curvilinear model. 
Details of the transformed equations and the finite difference schemes used have been given in 
Sections 5 and 6. 

Three case studies have been undertaken to test the model performance. Case studies 1 and 2 tested 
the ability of the curvilinear model to predict tidal circulation in real estuaries. The predicted results 
agreed well with measurements in both cases, with no stability problems encountered in these tests. In 
case study 2, solute transport was also simulated, illustrating the effectiveness of the stretching 
technique. The final test carried out simulates the solute transport process in a laboratory meandering 
channel. The comparisons with the flume data are very encouraging. 
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